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e Silicon carbide (SIC) high-power high-
temperature electronics
— NASA Glenn Research Center, Cleveland, OH
— DARPA (Sterling Semiconductor)

— Infineon and Power Electronics Reliability Group (PERG)

e Silicon-on-insulator (SOI) RF and low-power

electronics

— US Army (PolyFET RF Devices, Allied Signal, Honeywell)
— Caltech/Jet Propulsion Laboratory (MIT Lincoln Labs,

Honeywell)
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Bulk SOl
* No “kink” in output current e Suppressed substrate coupling
* Low self-heating  Low capacitance

* Excellent passive components
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* Leakage current
— SOl typical has lower leakage

— High leakage here due to
unoptimized drain-body diode 10"
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DC Characteristics

DRAIN CURRENT (mA)
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SOl has higher saturation current
SOl current degrades less at elevated temperatures
SOl shows some negative differential resistance from self-heating
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« SOl has higher forward gain (S,,) at room and elevated temperature

e SOl and bulk have very similar S;;: SOI can replace bulk without
redesigning input matching networks

« SOl has better gain, especially when DC bias current is high (class A)
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e SOl shows more pronounced self-heating at DC bias point
« Despite 20°C higher internal temperature, SOI outperforms bulk
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Mid- to long-range transmission

Frequency and Power Ratings

— 800 MHz to 2.4 GHz

— mMWtoW

— Wireless handsets, pagers, GPS

Short-range transmission

— 2.4 GHz
— UW to mW

— Bluetooth, wireless LAN
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1G AMPS 800 MHz, 900 MHz
2G/2.5G cdmaOne 900 MHz
GSM 900 MHz, 1.8 GHz, 1.9 GHz
GSM EDGE, PCS 1.9 GHz
3G UMTS, W-CDMA |2.1 GHz
Embedded | Bluetooth 2.4 GHz
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More efforts towards power |C application than RF power amplifiers

K.Shenai, E. McShane, and S.K. Leong, “Lateral RF SOl Power MOSFETs with fT of 6.9GHz,”
|EEE Electron Device Lett., vol. 21, no. 10, Oct. 2000 pp. 500-502




Power Delivery Trends

Electrical Engineering
and Computer Science
University of lllinois

at Chicago
. 35
 Power gain _ - A
HH 11 1] . H H = 1
— Silicon “power” devices limited s
to LDMOS and CMOS variants & 25 s O
— Bulk and SOI show similar E 0 % e WELFES Ehemonl]
= SiGe HBT. Bivwl
performance = % AlGuAsCinds AT, GSMPES
_ SiGe competes well with GaAs & 1 e
MESFETSs to 2.4 GHz 10 0
0.1 1 10
OUTPUT POWER (W)
RO &
- PAE 70
- “ ” . O
— Silicon “power” devices very 60 X o0ty
competitive to 2.1 GHz = 50| COVOS GES 4, . A
— Ordinary CMOS is promising . i oo o K
| & MEsFETD, UDSMIPLS|
— SiGe is comparable to GaAs “ 8 O iGe e, asmcs| T
MESFETS P
10 b4 CMOS, GSMPCE w

0.001

0.01 0.1 \ | 10
OUTPUT POWER (W)




Electrical Engineering

SOl Devices for Radiation Tolerance {e s wmoe

at Chicago

Deice |Patem |W, W, W, r | WiW, |Ryg
(Hm) | (um) | (um) %) | (k9
1 A 8.9 0 10.1 4 |119 55
2 A 129 0 141 4 |851 7
3 A 169 |0 181 |4 |663 99
4 B 0.9 6.8 10.1 8 |238 37
5 B 49 6.8 141 8 |17.0 39
6 B 8.9 6.8 181 |8 |133 50
7 C 0.9 6.8 101 |8 |238 37
8 C 0.9 10.8 141 8 |17.0 57
9 C 0.9 14.8 18.1 8 |133 78

* Enclosed layout transistors

W, +
R =W g MW

Gate is a continuous loop

No oxide edge shared by
drain and source

Body resistance defined by
ratio of gate segments

L




Physics of Scaling and the Kink Effect

Electrical Engineering
and Computer Science
University of lllinois
at Chicago

e Narrow devices

— Kink is proportional to device
width (or separation of body ties)

— Charge-sharing effects are
suppressed by body ties

 Wide devices

— Kink is inversely proportional to
device width (or separation of
body ties)

— Enhanced charge-sharing
reduces C, and hence ?I,
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e Breakdown

— Little sensitivity to body tie
geometry

— Device “corners” do not
contribute to high electric field

[
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 Leakage

— Widest separation of body
ties has most severe charge-
sharing (lowest C)

— Lower C, causes a more
Ideal subthreshold slope
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o Effect of device width

— Kink is suppressed with
Increasing body resistance

— Kink can be reduced by
over 60%

o Effect of body tie pattern
— Body tie pattern plays a role
in suppressing kink
— Kink always reduced most

using pattern “C” (body ties
close to device corners)

CONDUCTANCE RATIO

CONDUCTANCE RATIO

Width scaling per pattern
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Present

RF SOI has performance competitive with bulk—could be
better than bulk with optimization

Signal-level SOl is very sensitive to body tie
position—bulk CMOS models are unsuitable

Future
Reduce leakage currents
— Extend lightly-doped drain to BOX interface
Reduce specific on-resistance
— Operate device at higher gate overdrive
— Shrink drawn gate length closer to effective gate length
— Optimize length of lightly-doped drain extension
Increase forward gain

— Increase BOX thickness to reduce further the output
capacitance




